
Journal of Statistical Physics, Vol. 100, Nos. 1�2, 2000

The Renormalization Group and Optimization
of Entropy
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We illustrate the possible connection that exists between the extremal properties
of entropy expressions and the renormalization group (RG) approach when
applied to systems with scaling symmetry. We consider three examples: (1)
Gaussian fixed-point criticality in a fluid or in the capillary-wave model of an
interface; (2) Le� vy-like random walks with self-similar cluster formation; and
(3) long-ranged bond percolation. In all cases we find a decreasing entropy
function that becomes minimum under an appropriate constraint at the fixed
point. We use an equivalence between random-walk distributions and order-
parameter pair correlations in a simple fluid or magnet to study how the dimen-
sional anomaly at criticality relates to walks with long-tailed distributions.

KEY WORDS: Renormalization group; entropy; Gaussian model; random
walks; bond percolation.

1. INTRODUCTION

Since the introduction of the renormalization group (RG) concepts in the
study of critical phenomena, (1, 2) and their success in explaining scaling and
universality, many authors have accomplished a vast number of fruitful
applications of the resultant method, first within the field of phase tran-
sitions in statistical mechanics, and then in other areas of physics, in
condensed matter problems, in non-linear dynamics and in other fields.(3) The
discussion of the roots and connections of the RG strategy for handling
problems involving many length scales with quantum field theory has
also had a long history.(3, 4) Nowadays the RG theory has matured as
the leading computational technique for determining the properties of
systems exhibiting self-similarity under rescaling, and, after all the years of
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experience, an appraisal of its general nature has become more clearly
recognized. A characteristic skill or proficiency element stands out in the
RG implementations, since for every chosen construction the RG transfor-
mation can be suitably or poorly designed, inasmuch as the practical goal
of obtaining critical RG flow lines that terminate at meaningful non-trivial
fixed points is dependent on the particular choices made.(3) Specifically,
and according to our knowledge, we note that in this formalism the
guiding character of a variational approach is apparently absent.(5)

Here we recount and provide additional evidence that supports the
possibility for an existing connection between the extremal properties of
entropy expressions and the RG approach when applied to systems with
scaling symmetry.(5) The importance of this observation lies in the potential
usefulness of incorporation of optimization techniques in the practice of
the RG methodology. We select three examples: (1) Gaussian fixed-point
criticality in a fluid or in the capillary-wave model of an interface. We
employ the Gaussian distribution for the density fluctuations of the fluid at
its critical point, or, equivalently, for the interfacial displacement in the
absence of gravity in a capillary-wave model, to evaluate the ordinary
Boltzmann�Gibbs�Shannon (BGS) entropy expression. We identify the
irrelevant variables and observe their effect in the entropy, and find
indications that at the fixed-point where scaling is obeyed at all length scales
the entropy is a minimum. (2) Le� vy-like random walls with self-similar cluster
formation.(6�8) We analyze the properties of walks on a lattice described by
step distributions with asymptotic power-law decay that may have
divergent moments of order two and higher. We corroborate that both the
BGS and the non-extensive Tsallis(9) expressions for the entropy decrease
when the RG transformation is applied.(5) The existing analogy (10) between
a random walk and the Ornstein�Zernike relation for the pair correlation
functions in a fluid or magnet is employed to describe the critical
phenomena in a lattice gas or Ising model. We find that the anomalous
dimension ' at criticality is simply related to the index + of the Le� vy
distribution, and the parameter q in the Tsallis entropy is used as a measure
of the non-extensivity associated to the non-Gaussian fixed point.
(3) Long-ranged bond percolation.(11) We describe a family of percolation
systems on a lattice where each site is connected to all others through a
bond occupancy probability distribution that decays asymptotically as a
power law of the bond length. An RG transformation of the same form as
that appearing in the random walk problem can be seen to apply here too,
and therefore we can borrow the entropy expressions derived (and the
conclusions drawn from them) in the previous problem. A connection
between a geometrical and a thermal system also holds in this case and the
properties of the percolation systems would also occur in an equivalent family
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of Potts models. In our examples we observe that as the RG transformation
is applied to the distributions that describe critical systems, as the irrele-
vant variables decrease in value, the entropy also decreases and is minimal
at the fixed point where these variables vanish.

In the following three sections we give details of our analysis of each
of these three examples and in the final section we provide a brief
summary.

2. GAUSSIAN FIXED-POINT CRITICALITY

Consider the (number) density fluctuation $\(r)#\(r)&\0(r) about
an equilibrium state \0(r) in a d-dimensional system, and an effective
Hamiltonian (divided by kBT�2) of the form

H=| dr dr$ C(r, r$) $\(r) $\(r$), (1)

where C(r, r$)#$H�$\(r) $\(r$) is simply related to the so-called direct
correlation function c(r, r$) via C(r, r$)=$r, r$ �\(r$)&c(r, r$). The fluctuation
$\(r) can be decomposed into two terms, $\(r)=&{\0(r) } =(r)&\0(r) {
} =(r), where =(r) is the deformation vector. When the fluctuation takes
place in an equilibrium state of uniform density \0 the gradient term {\0(r)
vanishes, C(r, r$)=C( |r&r$| ), and one can write

H=| dr dr$ C( |r&r$| ) `(r) `(r$), (2)

where C( |r| )=\2
0C( |r| ) and `(r)={ } =(r), so that $\(r)=&\0 `(r). On the

other hand, when considering rigid fluctuations of a planar interface \0(z)
it is the divergence term { } =(r) that vanishes, and C(r, r$)=C( |R|, z, z$)
where R is a vector parallel to the interface and z and z$ are coordinates
perpendicular to it. One can write H similarly as

H=| dR dR$ C( |R&R$| ) `(R) `(R$), (3)

where now C( |R| )=� dz dz$C( |R|, z, z$)(d\0 �dz)(d\0 �dz$) and $(R, z)=
\0(z&`(R))&\0(z)=&(d\0�dz) `(R). In Fourier space Eqs. (2) and (3)
become (with d replaced by d&1 in case of Eq. (3))

H=(2?)&d | dk C� (k) �̀ (k) �̀ (&k), (4)
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where k=|k|. In the Gaussian model we assume that the moments of
C( |x| ), with x=r or x=R, exist and we have C� (k)=�n C (2n)k2n where
C (2n)#(&1)n (2n!)&1 � dx|x|2n C( |x| ).

The partition function is given by

5=N `
k<4

| d �̀ (k) d �̀ (&k) exp(&H[ �̀ ]), (5)

where the normalization constant N is a function of the initial cutoff 4. The
new effective Hamiltonian H$ in the RG transformation results from
integration of wavenumbers within a shell 4�b<k<4, and because 5 is
Gaussian in �̀ (k) each k term can be integrated out individually to give

5=N$ `
k<4�b

| d �̀ (k) d �̀ (&k) exp(&H$[`]), (6)

with H$=H and where N$ is the normalization constant for the new cutoff
4�b. The customary rescaling k$=bk restores the original cutoff and the
change in normalization of the order parameter, replacing �̀ (b&1k$) by
�̀ $(k$)=b&(d+2)�2 �̀ (b&1k$), yields

H$[ �̀ $]=(2?)&d | dk$ C� $(k$) �̀ $(k$) �̀ $(&k$), (7)

where C� $(k$)=b2C� (b&1k$). Therefore, the moments of C( |x| ) transform as
C$(0)=b2C (0), C$(2)=C (2), C$(4)=b&2C (4), etc., and we observe that the
zeroth moment of C( |x| ) relates to a relevant variable, the second moment
remains invariant, and all other higher moments behave as irrelevant
variables. At the critical point C (0) vanishes and when the RG transfor-
mation is applied repeatedly under this condition the irrelevant variables
b&2n+2C (2n), n�2, tend to zero and vanish at the fixed-point Hamiltonian
H*[ �̀ ]=(2?)&d � dk C (2)k2 �̀ (k) �̀ (&k).

The probability distribution for the fluctuation �̀ (k) has the Gaussian
form

P[ �̀ (k)]=5&1 exp(&H[ �̀ ])=`
k

(2?)&1�2 C� (k) exp[&C� (k) �̀ (k) �̀ (&k)],

(8)

where the k-component variance is C� (k)&1. The entropy associated to P is

S=&kB :
�̀ (k)

P[ �̀ (k)] ln P[ �̀ (k)]=&| dk ln C� (k)+constant, (9)
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from which we notice that the entropy difference 2S=S$&S between
successive applications of the RG transformation would be negative if
C� $(k)>C� (k), and positive otherwise. Thus, provided the contribution to
C� (k) from the irrelevant variables C (2n), n�2, is always negative, i.e.,
�n=2 C (2n)k2n<0, the fixed-point entropy would be a minimum with
respect to the entropy of all other critical points C (0)=0 that define the so-
called critical hypersurface. Naturally, if �n=2 C (2n)k2n>0 the fixed-point
entropy would be maximum.

In the case of the critical point of a uniform fluid phase C (0)=
\0(kBTKT)&1 where KT is the isothermal compressibility, and for an inter-
molecular interaction potential consisting of a hard core repulsion when |r|�_
followed by an attractive term u( |r| )<0 when |r|>_ one has, in mean-field
approximation, that C (2n)=(&1)n (2n!)&1 \2

0(kBT )&1 � dr|r|2n u( |r| ), n�1.
The sign of �n=2 C (2n)k2n is determined by the competition between
negative and positive moments and the decay of u( |r| ) for large |r| is
decisive. The negative moments have lower orders that those for the
positive and this suggests they are dominant. For instance, if we consider
the one-dimensional Kac potential u( |r| )=&a# exp(&#|r| ), a>0, in
the limit # � 0, we obtain C (0)=\0(1&_\0)&2&2a\2

0(kBT )&1, C (2)=
2a\2

0(kB T )&1, and �n=2 C (2n)k2n=&2a\2
0(kBT )&1 k4(1+k2)&1<0.

For a liquid-vapor planar interface under a gravitational field
C (0)=(kB T )&1 2\mg (where 2\ is the density difference between the two
phases, m is the molecular mass and g the gravitational acceleration),
C (2)=(kB T )&1 # and C (4)=(kBT )&1 }, where # is the surface tension and
} the bending rigidity.(12) The function C~ (k) has been determined
recently(13) from accurate Molecular Dynamics simulations of the planar
interface for Lennard-Jones spherical particles, and } was found to be
unequivocally negative, a result that supports the property that the fixed-
point entropy is a minimum also in this case. Here the fixed-point
Hamiltonian corresponds to the ordinary capillary-wave model that
considers only surface tension as the restoring force for thermal distortions
in the absence of gravity, whereas the extended capillary-wave model(12)

corresponds to other critical-point Hamiltonians where the presence of
additional restoring forces, defined by the higher moments C (2n), n�2,
appear as irrelevant variables.

3. RANDOM WALKS WITH SELF-SIMILAR CLUSTER
FORMATION

We recall first some features of a symmetric one-dimensional random
walk on a lattice(6�8) that exhibits a scaling property such that under
appropriate conditions the trajectories consist of a hierarchy of self-similar
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clusters of visited sites. The walks are generated by a distribution for single
steps p+

�(l ) of the form

p+
�(l )=

A�

2
:
�

n=0

a&n($l, &bn+$l, bn), (10)

where a>1 and b>1. The allowed steps have unevenly spaced step lengths
bn and occur with probabilities proportional to a&n. Equation (10) can be
rewritten as the power-law p+

�(l )=A� |l |&+, A�=1&a&1, +#ln a�ln b,
and it can be seen that when +<2 the mean-squared displacement per
jump diverges. The structure function *+

�(k)=�l p+
�(l) exp(ikl ) is the

continuous non-differentiable function of Weierstrass

*+
�(k)=A� :

�

n=0

a&n cos(bnk), (11)

and its non-analytic small-k behavior was demonstrated(6, 7) to arise from
an infinite sum of regular terms obtained by iteration of the scaling equation

*+
�(k)=a&1*+

�(k)+A� cos k. (12)

When +�2 the singular part of *+
�(k) is of the form Q(k)|k| + with Q(k)

periodic in ln |k| with period ln b. The random walk was interpreted(6, 7) as
having an effective dimension deff=3&+ that exceeds the available spatial
dimension d=1 if +<2. The difference in dimensions deff&d=2&+ deter-
mines whether the walk is persistent deff&d�1 (the walker is certain to
return to any site because the set of sites visited by the walk cover the
lattice) or transient deff&d>1 (the return probability of the walker is
less than unity because the set of sites in the walk does not fill the entire
lattice). Thus, the walk is transient and trajectories display self-similar
clusters when +<1. The exponent + was identified with the fractal dimension
of the set of sites visited by the walks and the connection with the Le� vy
distributions was exhibited. (6, 7) The walk in Eq. (10) can be generalized
straightforwardly to square and simple cubic lattices.

For our purposes we enlarge the random walk problem in Eq. (10)
and consider a family of walks such that a class of them would be attracted
under the RG transformation to the original walk as a fixed point.(5)

Therefore, we generalize the expression for the distribution of single steps
pr(l ) to be

pr(l )=
Ar

2
:
r

n=0

an($l, &b n+$ l, bn), (13)
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the step lengths bn, b>1, have been maintained but now the probabilities
assigned to them are proportional to arbitrary positive numbers an . Also a
range for the step lengths br has been introduced, but the possibility r � �
is included; Ar normalizes pr(l ), i.e., A&1

r =�r
n=0 an . The elementary

RG transformation a$n #R[an]=aan+1 can be applied to our family of
walks. This transformation maps the sites l=bn+1 into the sites l $=bn

(eliminating intermediate lattice space between allowed step lengths) and
renormalizes the step probability by a restoring factor a. It is clear that the
Weierstrass walk p+

�(l ) and the simple nearest-neighbor step walk p0(l ) are
both fixed points of R. The first one is non-trivial in the sense that it is
associated to an infinite-ranged step distribution that can be reached via de
RG transformation only from other infinite-ranged step distributions p�(l )
required to approach asymptotically the condition an=a&n, n � �. The
distributions p�(l ) make up the ``critical hypersurface''' and the quantities
:n #an&a&n are the irrelevant variables that vanish as R is repeatedly
applied. The other fixed point p0(l ) is trivial since it is generated by the
application of the RG transformation to any ``noncritical'' finite-ranged
pr(l ), r<�.

The entropy of the step distribution pr(l ) along two representative
types of RG trajectories has been evaluated.(5) These are: a noncritical
trajectory starting with a truncated power-law distribution

p (1)
r (l)=(Ar �2) :

r

n=0

a&n($ l, &bn+$l, b n) (14)

that flows under R into the trivial fixed point p0(l ), and a critical trajectory
with a starting infinite-ranged distribution

p (2)
m (l )=(Am �2) :

m

n=0

an($ l, &bn+$l, b n)+(Am �2) :
�

n=m+1

a&n($l, &b n+$l, bn)

(15)

that flows under R into the non-trivial fixed point p+
�(l ). We quote below

the results obtained for the entropy of the walks in Eqs. (14) and (15)
where the summations over the lattice sites were done over |l | instead of l.
In this way the expressions obtained are independent of lattice coordination
number and also, as we shall see below, they can be used immediately for
the bond percolation problem described in the next section. For p (1)

r (l ) the
BGS expression S1 # &kB � |l | p(l ) ln p(l ) yields

k&1
B S r

1[ p(1)]=ln
1&=r+1

1&=
&

= ln =

1&=
+

(r+1) =r+1 ln =

1&=r+1 , (16)
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for all + with ==a&1. Whereas the generalized Tsallis entropy(9) Sq #
kB(q&1)&1[1&� |l | [ p(l )]q], that is non extensive for q{1 but reduces
to the customary extensive expression when q=1, (9) gives

S r
q[ p(1)]=

kB

q&1 _1&
(1&=)q

1&=q

1&=q(r+1)

(1&=r+1)q& , (17)

again for all +. The fixed point p0(l) has a vanishing entropy S 0
q=0 for all

q, and by taking the limit S �
q =limr � � S r

q we obtain for the non-trivial
fixed point

S �
q =

kB

q&1 _1&
(1&=)q

1&=q & (18)

with

S �
1 =kB _ln

1
1&=

&
= ln =

1&=& . (19)

For all q�1 and all r$>r>0 we find (since =q(r+1)<q=r+1, 0<=<1) that
S0

q<S r
q<S r$

q <S �
q , that is, the entropy is a monotonously increasing function

of the step length range r of the distribution p (1)
r (l ), being a maximum

for S �
q and a minimum for S 0

q . Because each time the RG transformation
a$n #R[an]=aan+1 is applied to the walk distribution p (1)

r (l ) it has
precisely the effect of shifting the value of r to r&1 in Eq. (14), we notice
that the entropy along the RG flow is monotonously decreasing and
vanishes at the trivial fixed point.

For p (2)
m (l ) we present results when the deviation from p+

�(l), $pm(l )#
(Am �2) �m

n=0 :n($l, &b n+$l, bn), is small, i.e., when only terms linear in
$pm(l ) are retained. The expression S1 #&kB � |l | p(l ) ln p(l ) yields

k&1
B S m

1 [ p(2)]=ln
1&$m

1&=
&_=(1&$m)

1&=
&#m & ln =&$m , (20)

for all +, where $m #�l $pm(l )=Am �m
n=0 :n and #m #Am �m

n=0 n:n . The
Tsallis expression Sq #kB(q&1)&1[1&� |l | [ p(l )]q] under the same
condition gives

S m
q [ p(2)]=

kB

q&1 _1&
(1&=)q

1&=q (1&$m)q&q(1&=)q&1 (1&$m)q&1 #m& ,

(21)
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again for all +, where now #m #Am �m
n=0 =(q&1) n:n . If we limit the depar-

ture of the magnitude for the step probability coefficients an , n�m, from
the fixed-point power law value a&n (i.e., if we bound the departure of the
irrelevant variables :n=an&a&n from zero) we can prove that the entropy
decreases monotonously as $m � 0 and is a minimum at the fixed point
$m=0. With this purpose we adopt the constraint

:
m

n=0

n:n=C1 :
m

n=0

:n , (22)

when q=1, and chose C1 to be C1==(1&=)&1 since then the constraint
contains as a special case the fixed point condition an=aan+1 . A
generalization of this procedure for q>1 leads to a constraint of the form

:
m

n=0

=(q&1) n:n=Cq :
m

n=0

:n , (23)

where the constant Cq above is chosen to be Cq=(1&=)(1&=q)&1 to
include an=aan+1 also as a special case. We find for all q�1 and all m>0
that S m

q >S �
q , therefore, the non-trivial fixed point distribution p+

�(l )
has an entropy S �

q smaller than that for any other infinite-ranged step
distribution p (2)

m (l ). It can be readily verified that S m
q , for all q�1,

decreases monotonously as |$m | � 0. Every time the RG transformation
a$n #R[an]=aan+1 is applied to the walk p (2)

m (l ) it shifts the value of m to
m&1 in Eq. (15), and therefore we obtain that when all the :n�0, or all
the :n�0, the entropy along the (critical) RG flow is monotonously
decreasing and attains a minimum at the nontrivial fixed point. When the
:n are of differing signs the entropy along the RG flow decreases
monotonously or not towards the fixed-point minimum according to
whether |$m | decreases monotonously or not towards zero as m � 0.

The mean-square displacement (l2) �
1 =� l l2p+

�(l ) diverges when
+�2, but (l2) �

q =� l l2[ p+
�(l )]q is finite when +�2 with q>1. The limit-

ing value of q for the convergence of (l2) �
q is q=1 for +>2, and q=2�+

for +�2 and this choice of the parameter q provides a convenient measure
of non-extensivity at the critical point. Thus, the Gaussian non-fractal
behavior obtained when +>2 is extensive, whereas the Le� vy-type fractal
behavior for +�2 is increasingly non-extensive as the dimension difference
deff&d=2&+ departs from zero.

The results obtained for the random walk can be applied to the critical
point of a simple fluid or magnet defined on the same lattice. The Ornstein�
Zernike equation h(l )=c(l )+\ �l $ c(l $) h(l&l $) relating the total pair
correlation h(l ) with the direct correlation function c(l ) of the fluid of
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density \ can be put into correspondence(10) with the equation for the
random walk generating function P(l; z)&z �l $ p(l $) P(l&l $; z)=$ l, 0 where
P(l; z)=�n Pn(l ) zn, and where Pn(l ) is the probability of occupancy of site
l after n steps.(14) The correlations for l{0 are given by c(l )=wzp(l ) and
\2h(l )=w&1P(l; z), where w=\&1(1&\)&1 P(0; z). The power-law decay
given to c(l ) by an infinite-ranged p�(l ) introduces criticality in the system
and the divergence of the susceptibility /=(1&\)[\P(0; z)(1&z)]&1(10)

indicates that the critical point is attained when z=1. One can easily verify
through the equivalence between h(l ) and P(l; z) that the anomalous
dimension exponent ' is '=deff&d=2&+. In Fourier space h� (k)t

[1&z*�(k)]&1 and at the critical fixed point h� (k)t |k|&+ when z=1 and
k � 0.

4. LONG-RANGED BOND PERCOLATION

The entropic properties for the random walk presented above can be
seen to apply also when the RG approach is employed in the study of a
closely analogous percolation problem. This is a bond percolation problem
in a one-dimensional lattice in which each site is connected to all other sites
through bonds that occur with a prescribed probability pij where i and j are
the positions of two sites separated by a distance l=| j&i |. A relevant
particular case, studied recently, (11) is that in which the bond occupancy
probabilities are given the power-law form pij= pl&:, where 0�p�1 is the
occupancy probability for bonds between first neighbors and :�0. It has
been found via numerical simulations(11) that this specific example displays
three regimes with differing percolation threshold pc . In the first, pc=1
when 2�:<� (the : � � limit corresponds to the ordinary, first-
neighbor, problem), in the second, 0<pc<1 when 1<:<2, and in the
third, pc=0 when 0�:�1. An interesting cross-over from extensive to
non-extensive behavior takes place for :=1 and the introduction of a
re-scaled threshold probability pc* no longer vanishes when 0�:�1 and
presents continuous behavior across the entire interval 0�:�2.(11)

rescaling of p appears necessary because for sufficiently slow decay of the
power law, i.e., when :�1, the number of bonds in the system �i, j pij are
no longer proportional to the number of lattice sites.

To facilitate immediate use of all the results in the previous section we
restrict the allowed bond lengths to be of sizes bn, b>1, with probabilities
proportional to an , and introduce a range br for these bond lengths. This
way the (normalized) bond occupancy distribution is given by

pr(l )=Ar :
r

n=0

an$l, bn , (24)
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where A&1
r =�r

n=0 an and a0= p, and the same RG transformation
a$n #R[an]=aan+1 can be employed here. Thus, the power-law pij= pl&:

studied in ref. 11 can be recognized as being the nontrivial fixed-point
distribution for our family of percolation systems, and the exponent : as
the Le� vy-walk exponent +#ln a�ln b (that is an=a&n, a>1, r � �), also
the first-neighbor problem is identified as the trivial fixed point. Our
main result holds, i.e., along the RG flow the entropy is monotonously
decreasing and attains a minimum at the fixed point distributions. We can
identify the regime cross-over at :=2 as the transition from extensive
Gaussian behavior to non-extensive Le� vy-like behavior. When :�2 the
second (and higher) order moments of pij become divergent and as before
we can introduce the dimension difference deff&d=2&: and the entropy
index q=2�: as measures of the degree of non-extensivity. The second
regime cross-over at :=1 can be identified as the onset of percolation
clusters that acquire the self-similar fractal property, for :<1 the set of
sites that form the percolation clusters (of fractal dimension :) do not
cover the entire lattice. Finally, we note that the distribution of bond
lengths at the nontrivial fixed point has the same non-analytic features
responsible for the non-Gaussian behavior of the walk defined by Eq. (10),
features that have been shown(6, 7) to be analogous to the singular behavior
displayed by thermodynamic properties in ordinary critical phenomena.
Specifically, the Fourier transform of pij satisfies Eq. (12), a scaling property
equivalent to that of the transformation equation for the free energy of a spin
system under the renormalization group.(6, 7) A well-known equivalence
exists between a bond percolation problem and a single-state Potts model
defined on the same lattice(15) where the bond occupation probabilities p ij

and the Potts coupling constants Jij relate as pij=1&exp(J ij�kBT ).

5. SUMMARY

In summary, we have considered three examples where self-similarity
under rescaling takes place, Gaussian criticality, random walks with long-
tailed step distributions, and long-ranged bond percolation. These are
amongst the simplest systems for which the RG approach can be applied
and offer particularly transparent RG transformations, flow properties and
fixed points, and we have taken advantage of this explicitness to probe on
the possible variational properties of this method. In all cases we found
evidence for a decreasing entropy function along the RG flows that
becomes a minimum at the fixed points. The entropies are evaluated for
pertinent distributions as they are transformed by the RG. These are: the
distribution for order-parameter fluctuations in the Gaussian model, the
distribution of single steps in the random walk, and the distribution of
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bond occupancies in the percolation problem. In the Gaussian model we
considered both bulk criticality and interfacial capillary-waves and we
described the role of the moments (higher than the second) of the direct
correlation function as RG irrelevant variables. By construction there is a
straightforward equivalence between the random walk and the percolation
problems described and they are seen to share the same properties, one of
which is fractal self-similar clustering. When the decay of the fixed-point
power law distribution becomes sufficiently slow departure from Gaussian
behavior occurs and non-extensive behavior of Le� vy-type long-tailed
distributions is obtained. The sharp onset of this non-analytic regime is
equivalent to that taking place at the borderline dimensionalities below
which classical theories breakdown. Indeed, we have seen that in the
statistical-mechanical analogs of these problems this behavior gives rise to a
non-vanishing dimensional anomaly. Interestingly, the extensions described
here of the previously studied(6, 7) Levy-like lattice random walk have revealed
that this walk, with pure power-law step distribution and with structure
function given by the Weierstrass function, corresponds to a RG non-trivial
fixed point. In all three examples we observe that along the critical RG
transformation flows, over which the irrelevant variables decrease in value,
the entropy also decreases and becomes a minimum at the fixed point
where these variables vanish. The links we have exhibited amongst
the various properties of scaling symmetry suggest that the variational
technique of optimal entropy may be of practical importance to the RG
applications.
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